
Runtime Checking of Datatype Signatures in

MPI?

William D. Gropp

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, Illinois 60439

Abstract. The MPI standard provides a way to send and receive com-
plex combinations of datatypes (e.g., integers and doubles) with a single

communication operation. The MPI standard speci�es that the type sig-

nature, that is, the basic datatypes (language-de�ned types such as int
or DOUBLE PRECISION), must match in communication operations such

as send/receive or broadcast. Because datatypes may be de�ned by the

user in MPI, there is a limitless collection of possible type signatures.
Detecting the programmer error of mismatched datatypes is di�cult in

this case; detecting all errors essentially requires sending a complete de-

scription of the type signature with a message. This paper discusses an
alternative: send the value of a function of the type signature so that (a)

identical type signatures always give the same function value, (b) dif-

ferent type signatures often give di�erent values, and (c) common cases
(e.g., prede�ned datatypes) are handled exactly. Thus, erroneous pro-

grams are often (but not always) detected; correct programs never are
agged as erroneous. The method described is relatively inexpensive to

compute and uses a small (and �xed, independent of the complexity of

the datatype) amount of space in the message envelope.

1 Introduction

The Message Passing Interface (MPI) [3, 2] provides a standard and portable

way of communicating data from one process to another, even for heteroge-

neous collections of computers. A key part of MPI's support for moving data

is the description of data not as a series of undi�erentiated bytes but as typed

data corresponding to the datatypes natural to the programming language being

used with MPI. Thus, when sending C ints, the programmer speci�es that the

message is made up of type MPI INT (because MPI is a library rather than a

language extension, MPI cannot use the same names for the types as the pro-

gramming language). MPI further requires that the type of the data sent match

the type of the data received; that is, if the user sends MPI INTs, the user must

? This work was supported by the Mathematical, Information, and Computational

Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

receive MPI INTs.1 MPI also allows the de�nition of new MPI datatypes, called

derived types, by combining datatypes with routines such as MPI TYPE VECTOR,

MPI TYPE STRUCT, and MPI TYPE HINDEXED. Because the matching of basic types

is required for a correct program, a high-quality development environment should

detect when the user violates this rule. This paper describes an e�cient method

for checking that datatype signatures match in MPI communication.

One of the reasons such error checking is important for MPI programs is

that MPI allows messages containing collections of di�erent datatypes to be

communicated in a single message. Further, the sender and receiver are often in

di�erent parts of the program, possibly in di�erent routines (or even programs).

User errors in the use of MPI datatypes are thus di�cult to �nd; adding this

information can catch errors (such as using the same message tag for two di�erent

kinds of messages) that are di�cult for the user to identify by looking at the

code.

An additional complexity is that MPI requires only that the basic types of

the data communicated match for example, that ints match ints and chars

match chars. This ordered set of basic datatypes (i.e., types that correspond to

basic types supported by the programming language) is called the type signature.

The type signature is a tuple of the basic MPI datatypes. For example, three

ints followed by a double is

(MPI INT; MPI INT; MPI INT; MPI DOUBLE):

A type signature has as many types as there are elements in the message. This

makes it impractical to send the type signature with the message.

MPI also de�nes a type map; for each datatype, a displacement in memory

is given. While the type map speci�es both what and where data is moved,

a type signature speci�es only what is moved. Only the signatures need to

match; this allows scatter/gather-like operations in MPI communication. For

example, it is legal to send 10 MPI INTs but receive a single vector (created with

MPI TYPE VECTOR) that contains at least 10 MPI INTs. Communicating with dif-

ferent type maps is legal as long as the type signatures are the same. Thus, it

isn't correct to check that the datatypes match; only the type signatures must

match.

Note that when looking at the type signature, the comparison is made with

the basic types, even if the type was de�ned using a combination of derived

datatypes. Thus, when looking at the type signature, any consecutive subse-

quence may have come from a derived datatype.

Consider the derived type t2 de�ned by the following MPI code fragment:

1 Two exceptions to this rule are mentioned in Section 4. A third, mentioned in the MPI

standard, is for the MPI implementation to cast the type; for example, if MPI INT

is sent but MPI FLOAT is speci�ed for the receive, an implementation is permitted
to convert the integer to a oat, following the rules of the language. As this is not

required, it is nonportable. Further, no MPI implementation performs this conver-

sion, and because it silently corrects for what is more likely a programming error,
no implementation is ever likely to implement this choice.

MPI_Datatype t1, t2, types[2];

int blen[2];

MPI_Aint displ[2];

types[0] = MPI_INT;

types[1] = MPI_DOUBLE;

blen[0] = 1;

blen[1] = 1;

displ[0] = ...;

displ[1] = ...;

MPI_Type_struct(2, blen, displ, types, &t1);

types[0] = t1;

types[1] = MPI_SHORT;

blen[0] = 2;

MPI_Type_struct(2, blen, displ, types, &t2);

The derived type t2 has the type signature

((MPI_INT, MPI_DOUBLE), (MPI_INT, MPI_DOUBLE), MPI_SHORT) =

(MPI_INT, MPI_DOUBLE, MPI_INT, MPI_DOUBLE, MPI_SHORT).

The approach in this paper is to de�ne a hashing function that maps the

type signature to an integer tuple (the reason for the tuple is discussed in Sec-

tion 3). The communication requirement is thus bounded independent of the

complexity of the datatype; further, the function is chosen so that it can be

computed e�ciently; �nally, in most cases, the cost of computing and checking

the datatype signature is a small constant cost for each communication opera-

tion. Since this approach is a many-to-onemapping, it can fail to detect an error.

However, the mapping is chosen so that it never erroneously reports failure. Fur-

ther, for the important special case of communication with basic datatypes (e.g.,

MPI DOUBLE), the test succeeds if and only if the type signatures match.

Other approaches are possible. The datatype de�nitions (just enough to re-

produce the signature, not the type map) could be sent, allowing sender and

receiver to agree on the datatypes. The de�nitions could be cached, allowing

a datatype to be reused without resending its de�nition. The special case of

(count,datatype) would reduce the amount of data that needed to be communi-

cated in many common cases. Still, comparison of di�erent datatypes in general

would be complex, even if common patterns were exploited. Another approach is

to send the complete type signature; this is the only approach that will catch all

failures (various compression schemes can be used to reduce the amount of data

that must be sent to describe the type signature, of course). Such an approach

could be implemented over MPI by using the MPI-2 routines to extract datatype

de�nitions, along with the MPI pro�ling interface. For systems with some kind

of globally accessible memory, such as the Cray T3D, it is possible to make all

datatype de�nitions visible to all processes, as in [1].

2 Datatype Hashing Function

We are looking for a function f that converts a type signature into a small

bit range, such as a single integer or pair of integers. The cost of evaluating

f should be relatively small; in particular, the cost of evaluating f for a type

signature containing n copies of the same type (derived or basic) should be o(n);

for example, logn. Because a type signature may contain an arbitrary number

of terms, the easiest way to de�ne f is by a binary operation applied to all of

the elements of the type signature. That is, de�ne a binary operation � that can

be applied to a type signature (�1; : : : ; �n) as follows:

f(�1) = �1

f((�1; �2; : : : ; �n)) =

nM
i=1

�i:

For example,

f(int; double) = (int)� (double)

and

f(int; double; char) = (int)� (double)� (char):

In order to make it inexpensive to compute the hash function for datatypes

built from an arbitrary combination of derived datatypes, the hash function must

be associative. Since we want (int,double) to hash to a di�erent value from

(double,int), we want the operation � to be noncommutative.

For this approach to be useful, the hash functionmust hash di�erent datatypes

to di�erent hash values, particularly in the case of \common" errors, such as mis-

matched prede�ned datatypes.

3 A Simple Datatype Hashing Function

We need an operation that is both associative and noncommutative. Our ap-

proach is to de�ne a tuple (�; n) where � is a datatype (derived or basic) and n

is the number of basic datatypes in �. The action of � is given by

(�; n)� (�;m) � (� + (� << n); n+m);

where the operators + and << are chosen to have the following properties:

(� << n) << m = � << (n+m) (1)

(�+ �) + = �+ (� +) (2)

(� << n) + (� << n) = (�+ �) << n: (3)

One choice for these operators is bitwise exclusive or (xor) for + and circular

left shift for <<. These operations are often chosen for hash functions because

they are very cheap to apply. They have the necessary properties, as can be

proven by writing the � and so forth as bit vectors and then applying the op-

erations xor and circular shift to those bit vectors. Another choice of operators

is integer addition modulo 232 for + and circular left shift by 3 for << (that is,

a << 1 is a, shifted left three bits).

These properties allow us to prove that the operation � is associative:

((�; n)� (�;m)) � (; p) =

((�+ (� << n); n+m)) � (; p) =

((�+ (� << n) + (<< n+m); n +m + p) =

((�+ ((� + (<< m) << n)); (n+ (m + p)) =

((�; n)� (� + (<< m);m + p)) =

((�; n)� ((�;m) � (; p))):

The operation � is not commutative:

(�; n)� (�;m) =

(�+ (� << n); n+m)

(�;m) � (�; n) =

(� + (� << m); n +m);

but

(�+ (� << n)) 6= (� + (� << m))

except in special cases.

Note that addition and xor by itself are commutative; the shift operation

provides a noncommutative operation.

We will use this operation to build f . Speci�cally, we will apply � to a type

signature where we have replaced every basic type with a tuple containing an

integer representing the type and a one, indicating a single basic type. That is,

(int; double; char)

becomes

((int; 1); (double; 1); (char; 1))

and

f((int; double; char)) = (int; 1)� (double; 1)� (char; 1):

3.1 Cost of Evaluating f

Several identities can be used to reduce the cost of computing f . One important

case is a type signature containing a large number of the same basic type. This

is the signature that represents the most common MPI usage: a send with a

basic datatype and a count that is greater than one. Using a method that is

very similar to the approach for evaluating integer powers of matrices, we can

compute
Lm

i=1
(�; n) in O(log(m)) time by induction. Let m be 2k for some k.

Then

mM
i=1

(�; n) =

0
@
m=2M
i=1

(�; n)

1
A�

0
@
m=2M
i=1

(�; n)

1
A
;

the terms on the right are evaluated by inducation. This can be evaluated with

log
2
m evaluations. The generalization to arbitrary m is left to the reader.

Further, note that v << n = v << (n+wordsize) = v << (n mod wordsize);

this can be used to reduce the cost of evaluating f .

Finally, by exploiting the associative property of �, evaluating f for a new

derived datatype involves only the values of f for the datatypes that make up

the new datatype (with the exception of those containing types MPI PACKED or

MPI BYTE). Thus, computing f for a datatype has cost proportional only to the

number of di�erent datatypes (either user-de�ned or basic) used in the de�nition

and proportional to the log of the number of instances of each datatype.

3.2 Hash Function Quality

For the hash function to be useful, collisions should be rare. Since in a typi-

cal program, MPI type signatures are not randomly distributed, it makes the

most sense to experimentally evaluate some common datatype patterns. Fur-

ther, while there are 13 distinct basic MPI datatypes in the C binding, most

programs use only a few types, such as MPI INT and MPI DOUBLE. Types such

as MPI UNSIGNED CHAR are rarely used. Thus, for most applications, only a few

basic datatypes will appear. To see how likely a collision in the hash function

might be, we tested the following patterns:

n : �i (4)

m : (1 : �i; (n� 1) : �j) (5)

1 : �i; m : (1 : �i; (n � 1) : �j); (6)

where n : x means n copies of x. These correspond to the cases of count (n) of

a basic datatype (4), count m of a structure containing n members (5), and a

structure containing count m of another structure (6). Various values of n and

m were used.

Table 1 shows the results of the tests. Clearly, only the choice of integer

addition with medium-sized integers provides an e�ective hash function; with

this choice, only one in one hundred di�erent type signatures hashed to the

same value. Further experiments may identify improved hash functions.

3.3 Improving the Type Signature Test

One modi�cation of the approach is to optimize for the special case of count

copies of a datatype (basic or otherwise), since this is the fundamental unit in

MPI (all MPI communication operations send count copies of a given datatype).

Table 1. Results of tests of the hash function. Collisions is the percentage of type
signatures whose hash value was the same as a di�erent type signature. Duplicates

gives the percentage of hash values that were duplicated. Operand indicates whether

the representation for a basic datatype is a small integer (less than 32) or a larger
integer (less than 216). We tested 4625 di�erent type signatures.

Operator1 Operator2 Operand Collisions Duplicates

xor rotate 1 small 57.4 13.4

xor rotate 3 small 48.9 10.5

+ rotate 1 small 24.9 11.5

+ rotate 3 small 29.4 10.3

xor rotate 1 medium 45.6 9.8

+ rotate 1 medium 1.2 0.58

if (�send != �recv) then
if (�send and �recv is basic) then error

else if (
L

count
send

i=1
(�send; nsend) !=L

countrecv

i=1
(�recv; nrecv)) then error

endif

endif

Fig. 1. Modi�cation to test to provide exact handling of the most common case.

In this case, we send (count; �; n). The modi�ed test is shown in Figure 1.

Note that the count applied in the receive case is the actual count, not the

maximumcount that is provided by user in the MPI RECV call. In addition, we do

not need to send the count separately; we can simply use a single bit to indicate

that the datatype is basic and the count can be computed, if necessary, from the

length of data sent. With this modi�cation, basic datatypes are handled exactly

(all errors are detected).

4 Limitations

MPI allows users to send partial datatypes. That is, the user can de�ne a

datatype representing, for example, an int followed by ten doubles, and re-

ceive this into a datatype of an int followed by �fty doubles, as long as the

type signature of the data that is sent matches the type signature at the receiver

for all of the types that are used. This allows the user to de�ne a maximum-sized

datatype on the receive end but an actual sized datatype on the send end.

In MPI, the user can detect this by examining the MPI Status value returned

by the receive. If the routine MPI GET COUNT returns MPI UNDEFINED, then the

routine MPI GET ELEMENTSmay be used to determine how many elementary (pre-

de�ned) MPI datatypes were sent. In the case above, MPI GET ELEMENTS would

return eleven (one int plus ten doubles).

Our test does not handle this. Thus, it must also test for MPI GET COUNT

being MPI UNDEFINED; in that case, the test passes (even if the type signature

do not, in fact match).

In principle, a corresponding value of f could be constructed by using the

same process that is used in an MPI implementation to evaluate MPI GET ELEMENTS;

by integrating the computation of f with this routine, this test can be performed

with low additional cost.

The MPI datatype MPI PACKED and MPI BYTE also present special problems.

MPI PACKED can be handled by exploiting the availability of a header in a packed

bu�er. MPI BYTE explicitly turns o� type signature matching and is best handled

with a reserved hash value (e.g., 0xFFFFFFFF,-1).

5 Conclusion

We have shown an e�cient way to catch many user errors caused by type sig-

nature mismatch at run time in MPI programs. The cost is relatively small;

consuming only an additional 32 to 64 bits (4 to 8 bytes) of message header and

evaluation cost that is bounded by O(m logn) for derived datatypes containing

m di�erent types with repeat count � n. The most common cases (count of a

basic datatype) take constant time. We note that this approach can be used for

any system that incrementally packs and unpacks data, such as XDR or PVM.

Acknowledgments

I thank Lloyd Lewins for the suggestion of using a hashing function to support

error checking of derived datatypes, and Rusty Lusk for his valuable comments.

References

1. Jason Hunter. Datatype checking in Cray T3D native MPI. Technical Report

EPCC-SS95-07, Edinburgh Parallel Computing Centre, 1995.

2. Message Passing Interface Forum. MPI: A message-passing interface standard.
http://www.mpi-forum.org.

3. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.

International Journal of Supercomputer Applications, 8(3/4):165{414, 1994.

